

Realtime API

API Version: 1.0.0

Document Revision: 17

Last change: 21 august 2019

Kwebbl BV

Modemstraat 1

1033RW AMSTERDAM info@kwebbl.com

Netherlands www.kwebbl.com

 Realtime API 2

Table of Contents
Introduction... 3

Intended audience ... 3

Example use cases ... 3

Terms of Use .. 4

Getting Started .. 7

Prerequisites ... 7

The Basics .. 7

Authorization .. 8

Overview .. 8

Definitions ... 8

Authorization Code Grant Flow .. 9

a) Redirect the user to the Authorization endpoint .. 10

b) User authentication and granting permissions .. 11

c) Redirection to client application with authorization code .. 11

d) Exchange authorization code for access token ... 13

e) Response with access token ... 14

Using an Access token to make requests .. 15

Restoring / Renewing an Access Token.. 17

Available Scopes .. 18

Access Informational Resources ... 19

List of Extensions ... 19

Retrieve a specific extension ... 21

Subscribing to Realtime Events ... 23

List of subscriptions.. 23

Retrieve a specific subscription ... 26

Request a new subscription .. 29

Cancel a subscription ... 32

Modify a specific subscription .. 33

Receiving events from subscriptions ... 34

Event Structure .. 34

Available events .. 35

Perform Realtime Call Actions .. 42

Placing a new call .. 42

Manipulating an existing call .. 44

Terminate / Hangup ... 44

Transfer .. 45

Hold and Resume ... 47

Call Recording ... 48

Multiple CallerID’s .. 49

Get list of CallerID’s .. 49

Change user CallerID ... 50

Changelist .. 52

 Realtime API 3

Introduction

Intended audience

This document describes the technical specifications of the Realtime API and is only

intended to be used by Software Engineers aiming to implement the Realtime API into

a third party application.

Example use cases

The Realtime API brings a bunch of events and call actions that will allow flexible

integrations with 3rd party and custom software. Events include call being started,

answered, transferred, recorded etcetera whilst actions include starting calls, stopping

calls and transferring calls.

Use cases that could be created with this API include:

• Call me back on an ecommerce site

• Customer Card popups in CRM

• Automatically open tickets in an inbound support call center

• Show the BLF status of all co-workers in an online company guide

• Click to dial from an online company phone book

• Etcetera….

 Realtime API 4

Terms of Use

1. Purpose

The Kwebbl Realtime API is an open platform. You can access this

infrastructure free of charge, provided you share our goals, beliefs and

adhere to these terms and disclaimers as laid out below.

2. Data Privacy and Security

a. Your network, operating system and the software of your web

servers, databases, and computer systems (collectively, “Systems”)

must be properly configured to securely operate your Application

and store Content. Your Application must use reasonable security

measures to protect the private information of your users. You must

not architect or select Systems in a manner to avoid the foregoing

obligation.

b. You must promptly report any security deficiencies in, or intrusions

to, your Systems that you discover to Kwebbl in writing via email to

support@kwebbl.com. You will work with Kwebbl to immediately

correct any security deficiency, and will immediately disconnect any

intrusions or intruder. In the event of any security deficiency or

intrusion involving the Application or APIs, you will make no public

statements (e.g. press, blogs, social media, bulletin boards, etc.)

without prior written and express permission from Kwebbl in each

instance.

c. Once you start using the API you will be given Access Credentials for

your Application. “Access Credentials” means the necessary security

keys, secrets, tokens, and other credentials to access the APIs. All

activities that occur using your Access Credentials are your

responsibility. Keep them secret. Do not sell, transfer, or sublicense

them. Loss or theft of these Access Credentials could lead to high

cost due to fraudulent calls, for which you will be held responsible

and liable.

3. Monetization and Fees

a. You are not allowed to monetize the applications that you build on

top of the APIs without prior approval from Kwebbl.

b. The APIs are currently provided free of charge, but Kwebbl reserves

the right to charge for the APIs in the future. If we do charge a fee

for use of the APIs or any developer tools and features, you do not

have any obligation to continue to use our developer resources.

 Realtime API 5

4. Support and Modifications

a. We may provide you with support or modifications for the APIs in

our sole discretion and we may stop providing support or

modifications to you at any time without notice or liability to you.

b. We may release subsequent versions of the APIs and require that

you use those subsequent versions. Your continued use of the APIs

following a subsequent release will be deemed your acceptance of

modifications.

5. Monitoring

You agree to assist Kwebbl in verifying your compliance with these Terms

by providing us with information about your Application and storage of

Content, which may also include access to your Application and other

materials related to your use of the APIs. If you do not demonstrate full

compliance with these Terms, we may restrict or terminate your access to

the APIs.

6. Term, Suspension and Termination

a. The term of these Terms will commence on the date upon which you

agree to these Terms and will continue until terminated. You may

terminate these Terms by discontinuing use of our APIs.

b. We may suspend or terminate your use of all or any of the APIs at

any time if we believe you have violated these Terms or if we believe

the availability of the APIs in your Application is not in our or our

clients’ best interests.

c. We may discontinue the availability of some or all of the APIs at any

time for any reason. We may also impose limits on certain features

and services or restrict your access to some or all of the APIs. All of

our rights in these Terms may be exercised without prior notice or

liability to you.

7. Compliance and Amendments to these Terms

a. You must comply with these Terms in order to use the APIs.

b. We reserve the right to modify, supplement, or replace the terms of

these Terms, effective prospectively upon posting on our Support

Site or otherwise notifying you. For example, we may publish an

article on the Support Site when we have amended these Terms so

that you may access and review the changes prior to your continued

use of the APIs and Developer Resources. If you do not want to

agree to changes to these Terms, you can terminate these Terms at

any time by discontinuing use of our APIs.

8. Disclaimer

 Realtime API 6

a. We provide this documentation, the API and all other resources on

an "as is" and "as available" basis with no warranties, either express

or implied, of any kind.

b. Kwebbl does not guarantee that the APIs, related services or any

other developer resources it provides will function without

interruption or errors in functioning. In particular, the operation of

the Kwebbl APIs may be interrupted due to maintenance, updates

or system or network failures. Kwebbl disclaims all liability for

damages caused by any such interruption or errors in functioning.

c. Furthermore, Kwebbl disclaims all liability for any malfunctioning,

impossibility of access, or poor use condition of the Kwebbl APIs due

to inappropriate equipment, disturbances related to Internet Service

Providers, to the saturation of the Internet Network or for any other

reason.

 Realtime API 7

Getting Started

Prerequisites

Connecting with the API requires you to have a webserver available for public

access. For security reasons it is required that this webserver is available using

SSL/HTTPS, the certificate may however be self-signed. Client applications will

require a server side http component to mediate in the oAuth2 authentication and

to receive call events.

Implementation of this API will require knowledge of software development and

common concepts like REST, CRUD, Webhooks and oAuth 2.

The Basics

Protocol HTTPS

Host realtime.api.kwebbl.net

Note: Custom URL for whitelabel clients! Eg

realtime.api.yourdomain.com

Base URL /v100/

Content Type JSON

Authorization

Standard

oAuth 2, 3-legged with Bearer type tokens

RFC6749 RFC6750

Common Concepts REST

CRUD

Webhooks (subscriptions)

 Realtime API 8

Authorization

Overview

Each request to resources of the Realtime API must be authorized, for this we use the

3-legged Authorization Code Grant Flow of the industry standard OAuth 2.0 protocol.

Definitions

Resource Owner (user) The entity that is in control of the data exposed by the

API, e.g. a company user

Client Application The mobile app, web site, etc. that wants to access

data on behalf of the Resource Owner

Authorization Server

(AS)

The Security Token Service (STS) or, colloquially, the

OAuth server that issues tokens

Resource Server (RS) The service that exposes the data, i.e. the API

Client ID Provided after installation/creation of the application

in the Company Panel

Client Secret Provided after installation/creation of the application

in the Company Panel

Redirect URL The callback URL of the client application. It is the

same as filled in during installation/creation of the

application in the Company Panel.

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749

 Realtime API 9

Authorization Code Grant Flow

Figure 1 An overview of the steps involved in obtaining authorization

The Authorization Code flow is used when a Client Application (a third-party server or

web application) would like to obtain access to a protected resource. The Client

Application does not require access to any credentials of the resource owner (user),

but instead obtains a key/token to access the protected resource on behalf of the

resource owner.

 Realtime API 10

Getting access to the protected resource involves the following steps:

a) Redirect the user to the Authorization endpoint

When user first tries to perform an action that requires authentication, the Client

Application will forward the user the following endpoint:

GET /authorize

The following query parameters are accepted by this endpoint:

Parameter Type Description

client_id string Required. The client ID provided by company admin

after installation the application in Panel

redirect_uri string Required. The callback URL of the client application

response_type string Required. The response type, expected from

authorization endpoint. Value: "code"

state string Optional. A random string. It is used to protect against

cross-site request forgery attacks.

scope string Optional. The scope of the access request, represented

as a list of space-delimited, case-sensitive strings.

Example URL:

GET
/authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz&redirect_uri=htt
ps%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

If the request to authorization endpoint fails due to invalid parameters (e.g. id,

callbacks etc.), the Authorization Server will inform Resource Owner (user) about the

error but will not redirect back to client callback.

 Realtime API 11

b) User authentication and granting permissions

After redirecting the user, the Authorization server will prompt the Resource Owner

(user) to enter his login credentials.

After a successful login the user gives permission to Client application to access his

resources and the requested scopes.

c) Redirection to client application with authorization code

The Authorization server will redirect the user back to the redirect_uri that was

specified in step a.

Access granted

If the user granted access to client application, the Authorization server appends an

additional query parameter CODE to the redirect_uri. This parameter contains the

(temporary) authorization code that Client application can exchange for an access

token in step d.

GET {redirect_uri}?code={code}

Access not granted

If the user did not grant access to the client application, the Authorization server

appends an additional query parameter ERROR to the redirect_uri. This parameter

contains an error code that explains why access was denied.

{redirect_uri}?error={error_code}

If the user entered invalid credentials, the client application will receive the error

INVALID_GRANT.

{redirect_uri}?error=invalid_grant

If the user refused to grant access to client application, the Authorization server will

send error code ACCESS_DENIED.

{redirect_uri}?error=access_denied

 Realtime API 12

The request from to the Client application may contain the following query

parameters:

Parameter Type Description

error string Required. Error code

error_description string Optional. Text with additional information about error

state string Required if it was present in the client authorization

request

Possible error codes are:

Error code Description

invalid_request Request is missing a required parameter or its

value is invalid

unauthorized_client Client cannot use this authorization method

access_denied User denied the permission grant request

unsupported_response_type The response_type of request is not supported

server_error Authorization server encountered an unexpected

error

Client state

If the optional STATE parameter was passed to authorization endpoint, the client

application will receive its value in the callback and should validate it against step a.

{redirect_uri}?code={code}&state={state}
{redirect_uri}?error=access_denied&state={state}

 Realtime API 13

d) Exchange authorization code for access token

After the resource owner granted access to the client application in step c, the client

application can use the temporary authorization code to request an access token.

POST /token

In this request you should specify an AUTHORIZATION header to authenticate the

client application using the HTTP Basic authorization scheme. The header should

contain the Client ID and Client Secret strings concatenated with : and base64

encoded. For example:

//base64_encode({client_id}:{client_secret});

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

The request may include the following parameters as JSON in the request body:

Parameter Type Description

code string Required. Authorization code that should be exchanged for

an access token.

grant_type string Required. Value: "authorization_code"

redirect_uri string Required. The callback URL of the client application.

scope string Optional. The scope of the access request, represented as a

list of space-delimited, case-sensitive strings.

Request body example:

{
 "code": "ZdadQ538tzYbY3ab8as7T8asd7sf6c5",
 "grant_type": "authorization_code",
 "redirect_uri": "https://client.example.com/callback"
}

 Realtime API 14

As an alternative to the authorization header the Client ID and Secret can also be

send in the body using the following parameters:

Parameter Type Description

client_id string Required. The client ID given for application after

registration in Kwebbl.

client_secret string Required. The client secret given for application after

registration in Kwebbl.

Request body example:

{
 "code": "ZdadQ538tzYbY3ab8as7T8asd7sf6c5",
 "grant_type": "authorization_code",
 "redirect_uri": "https://client.example.com/callback"
}

Using both the authorization header and adding the Client ID and Secret in the

request body is not allowed.

e) Response with access token

The Authorization server will respond with a JSON object that contains the access

token, the token type, the lifetime in seconds and a refresh token. The access token

is used to access API resources whilst the refresh token is used to request a new

access token if the lifetime has been exceeded.

Response example:

{
 "access_token": "XnwprKzFTprxzHyQ5aogpb9ao9agmtNd",
 "refresh_token": "06kx3EudiaIjww2hfi6OFNlWXgcUjB3f",
 "expires_in": 900,
 "token_type": "Bearer"
}

Important: Your application should store both the access and refresh tokens; without

them your user will have to go through the whole authorization process every time he

is accessing the API!

 Realtime API 15

Important: Make sure to keep your client secret in a safe place, in case of lost or theft

it can only be re-generated and it will replace the previous secret. This will make all

previously acquired access and refresh tokens invalid!

If the optional STATE parameter was passed, it will be included in the response and

should be validated.

In case of an error the Authorization Server may respond with the following codes:

HTTP

code

Error code Description

400 invalid_request Request is missing a required parameter or it's

value is invalid, or includes multiple client

credentials

401 invalid_client Client authentication failed (e.g., unknown client or

unsupported authentication method).

401 invalid_grant Authorization grant is invalid, the refresh token is

invalid or expired, or was issued to another client.

401 unauthorized_client Client cannot use this authorization method

500 server_error Authorization server encountered an unexpected

error

Error response example:

{
 'error': 'invalid_grant',
 'error_description': 'Refresh token is invalid'
}

If you attempted to authenticate using the Authorization request header, the

Authorization server will include a "WWW-Authenticate" response header with the

same error information.

Using an Access token to make requests

 Realtime API 16

To gain access to any of the APIs resources the Access Token should be send during

every request. This is done by adding it to the Authorization header as Bearer type.

For example, if the access token is “mF_9.B5f-4.1JqM” you would make the request

as such:

 GET /resource HTTP/1.1
 Host: server.example.com
 Authorization: Bearer mF_9.B5f-4.1JqM

Typical errors include:

401 – Invalid Grant

Try to generate a new Access Token using the Refresh Token or if that fails re-

authorize the user from scratch.

503 – Access Denied

You require additional permissions to access this resource. Refer to the list of

available scopes to find out which permission you need and then re-authorize the

user(s) from scratch to obtain these permissions.

 Realtime API 17

Restoring / Renewing an Access Token

After expiration, invalidation or loss of an access token the client application can

request a new token using the refresh token retrieved in step e. Note that a refresh

token expires after 196 days and the Access token usually expires after 14 days.

To request a new access token the steps are very similar to step d and e.

POST /token

Like previously you should specify an AUTHORIZATION header to authenticate the

client application using the HTTP Basic authorization scheme. The header should

contain the Client ID and Client Secret strings concatenated and base64 encoded.

For example:

//base64_encode({client_id}:{client_secret});

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Alternatively the Client ID and Secret can be included in the JSON body as in step d.

The request may include the following parameters as JSON in the request body:

Parameter Type Description

refresh_token string Required. Refresh token value, given with access token

grant_type string Required. Value: "refresh_token"

redirect_uri string Optional. The callback URL of the client application.

The response contains the exact same parameters and error codes as specified

earlier in step e.

Important: Any previously acquired access or refresh token will be invalidated right

after requesting these new tokens.

 Realtime API 18

Available Scopes

Scopes give access to specific kind of API resources, either owned by the user that

grants the permissions or owned by other users in the company. Only Admin users

may grant permissions to resources of other users in the company.

The available scopes are:

Scope Admin

Only

Description

user.info Read your user information.

company.dialplans Read information about all dialplans in the

company, not including the actions inside the

dialplan.

company.users Read user information for all users in the

company.

calls.events X Subscribe to all types of call events for all users

of the company.

calls.events.personal Subscribe to all types of call events of yourself.

calls.events.presence Subscribe to limited presence (BLF) events for all

users of the company.

calls.manage X Perform actions on calls from any user in the

company, actions include hangup, transfer, hold

and record.

calls.manage.personal Perform actions on calls from yourself, actions

include hangup, transfer, hold and record.

calls.create X Start new calls for all users of the company.

calls.create.personal Start new calls for yourself.

 Realtime API 19

Access Informational Resources

List of Extensions

Endpoint /extensions

Method GET

Scopes company.dialplans

company.users

Returns a list of extensions, including all users and dialplans in the company.

GET /extensions

200 OK
 [
 {
 "id": "p9wprKzFTprxzHyQ5aogpb9ao9agmtNd",
 "name": "Sales Dept",
 "number": 345,
 "external_number": 31102612345,
 “type”: “dialplan”
 },
 {
 "id": "f6kx3EudiaIjww2hfi6OFNlWXgcUjB3f",
 "name": "John Doe",
 "number": 1000,
 “type”: “user”
 },
 …
]

In case of success the response code is 200 OK, the body will contain a JSON array

with extension objects. Each extension object may contain the following parameters:

 Realtime API 20

Parameter Type Pattern Description

id string [a-f0-9]{32} A 128 bits hex describing the extension

name string .* For type user concatenation of first and

last name, for type dialplan the name of

the dialplan

number string \d{3, 15} Internal extension number of the user

or dialplan. May start with 0.

external_number string \d{3, 15} Optional. External number of a dialplan

in e164 without +. Only appears for

type dialplan. May start with 0.

type enum (user|dialplan) The type of extension, could be user or

dialplan.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

 Realtime API 21

Retrieve a specific extension

Endpoint /extensions/{extension_id}

Method GET

Scopes company.dialplans

company.users

Returns information about a specific extension identified by EXTENSION_ID. An

extension can either be a user or a company dialplan.

Examples:

GET /extensions/p9wprKzFTprxzHyQ5aogpb9ao9agmtNd

200 OK
 {
 "id": "p9wprKzFTprxzHyQ5aogpb9ao9agmtNd",
 "name": "Sales Dept",
 "number": 345,
 "external_number": 31102612345,
 “type”: “dialplan”
 }

GET /extensions/f6kx3EudiaIjww2hfi6OFNlWXgcUjB3f

200 OK
 {
 "id": "f6kx3EudiaIjww2hfi6OFNlWXgcUjB3f",
 "name": "John Doe",
 "number": 1000,
 “type”: “user”
 }

In case of success the response code is 200 OK, the body will contain a JSON

extension object. The extension object may contain the following parameters:

 Realtime API 22

Parameter Type Pattern Description

id string [a-f0-9]{32} A 128 bits hex describing the extension

name string .* For type user concatenation of first and

last name, for type dialplan the name of

the dialplan

number string \d{3, 15} Internal extension number of the user

or dialplan. May start with 0.

external_number string \d{3, 15} Optional. External number of a dialplan

in e164 without +. Only appears for

type dialplan. May start with 0.

type enum (user|dialplan) The type of extension, could be user or

dialplan.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occured

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

404 entity_not_exist The extension with the specified ID does not exist

 Realtime API 23

Subscribing to Realtime Events

List of subscriptions

Endpoint /subscriptions

Method GET

Scopes calls.events

calls.events.personal

calls.events.presence

Returns a list of all subscriptions.

GET /subscriptions

200 OK
[
 {
 "id": "a5dc443c0983ff28edf4a11798fcecfe",
 "events": [
 "created",
 "ringing",
 "answered",
 "terminated"
],
 "agents": [
 {
 "field": "*",
 "extension_id": "*",
 "number": "*"
 }
],
 "mode": "presence",
 "callback_url": "http://example.com/callback",
 "callback_content_type": “application/json”
 },
 …
]

 Realtime API 24

In case of success the response code is 200 OK, the body will contain a JSON array

with subscription objects. Each subscription object may contain the following

parameters:

Parameter Type Pattern Description

id string [a-f0-9]{32} A 128 bits hex describing the

subscription

events array Optional. A list of events to

which you are subscribed.

Default is ["created", "ringing",

"answered", "terminated"].

Also refer to “Available

events”.

agents array Optional. A list of agents

(extensions) to which you are

subscribed. Default is

[{"number": "*"}].

agents[].field enum *|from|to Optional. The field in which

to search for the number or

extension_id. * means both

in from (caller) and to

(callee).

agents[].number string \d{3, 15} Optional. The internal

number of an extension (user

or dialplan) you want to

subscribe to. * means all

agents[].extension_id string [a-f0-9]{32} Optional. A 128 bits hex

describing the specific

extension you want to

subscribe to. * means all

mode enum (presence|detailed) Optional. Default is

“presence”. Presence will

contain limited information

about the calls and is used

for BLF functionality. Detailed

will contain extended

information about the call

and parties involved.

 Realtime API 25

callback_url string .* Notifications will be POSTed

to this URL. This URL should

be a full path, including

protocol and domain.

callback_content_type enum application/json Optional. The content type of

the notifications. Currently

only application/json is

supported.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

 Realtime API 26

Retrieve a specific subscription

Endpoint /subscriptions/{subscription_id}

Method GET

Scopes calls.events

calls.events.personal

calls.events.presence

Returns a specific subscription identified by SUBSCRIPTION_ID.

GET /subscriptions/a5dc443c0983ff28edf4a11798fcecfe

200 OK
 {
 "id": "a5dc443c0983ff28edf4a11798fcecfe",
 "event_types": [
 "created",
 "ringing",
 "answered",
 "terminated"
],
 "agents": [
 {
 "field": "*",
 "extension_id": "*",
 "number": "*"
 }
],
 "mode": "presence",
 "callback_url": "http://example.com/callback",
 "callback_content_type": “application/json”
 }

In case of success the response code is 200 OK, the body will contain a JSON array

with subscription objects. Each subscription object may contain the following

parameters:

 Realtime API 27

Parameter Type Pattern Description

id string [a-f0-9]{32} A 128 bits hex describing the

subscription

event_types array Optional. A list of events to

which you are subscribed.

Default is ["created", "ringing",

"answered", "terminated"].

Also refer to “Available

events”.

agents array Optional. A list of agents

(extensions) to which you are

subscribed. Default is

[{"number": "*"}].

agents[].field enum *|from|to Optional. The field in which

to search for the number or

extension_id. * means both

in from (caller) and to

(callee).

agents[].number string \d{3, 15} Optional. The internal

number of an extension (user

or dialplan) you want to

subscribe to. * means all

agents[].extension_id string [a-f0-9]{32} Optional. A 128 bits hex

describing the specific

extension you want to

subscribe to. * means all

mode enum (presence|detailed) Optional. Default is

“presence”. Presence will

contain limited information

about the calls and is used

for BLF functionality. Detailed

will contain extended

information about the call

and parties involved.

callback_url string .* Notifications will be POSTed

to this URL. This URL should

be a full path, including

protocol and domain.

 Realtime API 28

callback_content_type enum application/json Optional. The content type of

the notifications. Currently

only application/json is

supported.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occurred

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

404 entity_not_exist The subscription with the specified ID does not exist

 Realtime API 29

Request a new subscription

Endpoint /subscriptions

Method POST

Scopes calls.events

calls.events.personal

calls.events.presence

Requests a new subscription according to the settings provided in the request body.

Settings include filters to specify which types and for which agents you would like to

receive.

POST /subscriptions
{
 "event_types": ["*"],
 "mode": "detailed",
 "callback_url": "http://example.com/callback"
}

The available parameters are:

Parameter Type Pattern Description

id string [a-f0-9]{32} A 128 bits hex describing the

subscription

event_types array Optional. A list of events to

which you are subscribed.

Default is ["created", "ringing",

"answered", "terminated"].

Also refer to “Available

events”.

agents array Optional. A list of agents

(extensions) to which you are

subscribed. Default is

[{"number": "*"}].

agents[].field enum *|from|to Optional. The field in which

to search for the number or

extension_id. * means both

 Realtime API 30

in from (caller) and to

(callee).

agents[].number string \d{3, 15} Optional. The internal

number of an extension (user

or dialplan) you want to

subscribe to. * means all

agents[].extension_id string [a-f0-9]{32} Optional. A 128 bits hex

describing the specific

extension you want to

subscribe to. * means all

mode enum (presence|detailed) Optional. Default is

“presence”. Presence will

contain limited information

about the calls and is used

for BLF functionality. Detailed

will contain extended

information about the call

and parties involved.

callback_url string .* Notifications will be POSTed

to this URL. This URL should

be a full path, including

protocol and domain.

callback_content_type enum application/json Optional. The content type of

the notifications. Currently

only application/json is

supported.

Notes about agents[] fields:

• If agents[].field is not empty, but agents[].extension_id and agents[].number

are empty than agents[].field will be changed to "*";

• If agents[].extension_id and agents[].number are both provided, events will be

filtered according to agents[].extension_id and agents[].number will be

changed to “*”.

Notes about scopes and permissions:

• calls.events – No limitations to filters in agents and events field.

• calls.events.personal – Filters in agents only allow receiving events involving

the user that requested the used access token. No limitations on events field.

 Realtime API 31

• calls.events.presence – Only allows events "created", "ringing", "answered",

"terminated" and mode "presence". No limitations on agents field.

Examples

Subscribe to all events for all users in the company. (note: call.events scope required)

{
 "event_types": ["*"],
 "mode": "detailed",
 "callback_url": "http://example.com/callback"
}

Minimal settings, subscribe to presence events of all users in the company.

{
 "callback_url": "http://example.com/callback"
}

Subscribe to presence events, only receive the start and stop of the call and only if

user 001 is the caller.

{
 "event_types": [
 "created",
 "terminated"
],
 "mode": "presence",
 "agents": [
 {
 "field": "from",
 "number": "001"
 }
],
 "callback_url": "http://example.com/callback",
}

In case of success the response code is 200 OK, 201 Created or 202 Accepted. The

body contains the just created subscription.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

 Realtime API 32

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occurred

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

Cancel a subscription

Endpoint /subscriptions/{subscription_id}

Method DELETE

Scopes calls.events

calls.events.personal

calls.events.presence

Cancel a specific subscription identified by SUBSCRIPTION_ID.

DELETE /subscriptions/a5dc443c0983ff28edf4a11798fcecfe

200 OK

{
 "ok": true
}

In case of success the response code is 200 OK.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

 Realtime API 33

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occurred

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

404 entity_not_exist The subscription with the specified ID does not exist

Modify a specific subscription

It is not possibly to modify a specific subscription. To modify just cancel the current

subscription and then create new one.

 Realtime API 34

Receiving events from subscriptions

Event Structure

After subscribing to events you will start receiving POST requests on the supplied

CALLBACK_URL. The base structure of these events looks as following:

Parameter Type Pattern Description

id string .* A unique identifier of the event

call_id string [a-f0-9]{32} A unique identifier of the call (leg)

event_type enum One of the event types as described in

“Available events”.

time string .* Date and Time of event according to ISO

8601. Includes milliseconds and usually

is UTC.

from object An object describing the agent that is

the caller.

via object An object describing an agent that is

involved in forwarding the call between

{from} and {to}. If included this usually

describes a dialplan.

to object An object describing the agent that is

the callee.

direction enum inbound|outbound Direction of the call.

The agent object in from and to has at least one of these properties:

Parameter Type Pattern Description

number string \+?\d{3,15} The internal number of an extension (user or

dialplan), the external number of a dialplan or

the external number of an external destination.

External numbers are in e164 format and may

or may not be prefixed with a + or 00.

extension_id string [a-f0-

9]{32}

A 128 bits hex describing a specific extension

(user or dialplan)

caller_id string .* The CallerID as used by the agent, could

anonymous.

 Realtime API 35

Note: Transfered and Bridged events differ from this structure

Available events

• created – The call (leg) was created

• ringing – The call (leg) is ringing

• answered – The call (leg) was answered

• terminated – End of the call (leg)

• transferred – The call (leg) was transferred

• bridged – 2 call legs were bridged together

• holding – The call (leg) is on hold

• resume – The call (leg) resumed from hold

• start_recording – Call recording was started for the call (leg)

• stop_recording – Call recording was stopped for the call (leg)

Note: As events are received and send asynchronously and distributed, the order of

events could change from call to call.

Created

{
 "id": "a1b2c3d0",
 "event_type": "created",
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous"
 },
 "to": {
 "number": "31101111111"
 },
 "direction": "inbound",
 "time": "2016-08-30T14:02:06.435Z"
}

 Realtime API 36

Ringing

{
 "id": "a1b2c3d2",
 "event_type": "ringing",
 "call_id": "4a2bcad2-c4b9e70a",
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous"
 },
 "to": {
 "number": "31101111111"
 },
 "direction": "inbound",
 "time": "2016-08-30T14:02:06.635Z"
}

Answered

{
 "id": "a1b2c3d3",
 "event_type": "answered",
 "call_id": "4a2bcad2-c4b9e70a",
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous"
 },
 "to": {
 "number": "31101111111"
 },
 "direction": "inbound",
 "time": "2016-08-30T14:02:16.635Z"
}

 Realtime API 37

Bridged

Parameters CALL_ID, FROM, TO and DIRECTION are moved to separate objects for each

respective call leg inside of the CALLS parameter.

{
 "id": "a1b2c3d3",
 "event_type": "bridged",
 "calls": [
 {
 "call_id": "4a2bcad2-c4b9e70a",
 "from": {
 "number": "31101111111"
 },
 "to": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "number": "31101222222"
 },
 "direction": "inbound"
 },
 {
 "call_id": "fd8265472-8c34a51b",
 "from": {
 "number": "31101111111"
 },
 "to": {
 "extension_id": "def456789abcdef456789abcdef45678",
 "number": "030"
 },
 "direction": "outbound"
 }
]
 "time": "2016-08-30T14:02:16.635Z"
}

 Realtime API 38

Holding

{
 "id": "a1b2c3d4",
 "event_type": "holding",
 "call_id": "4a2bcad2-c4b9e70a",
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous"
 },
 "to": {
 "number": "31101111111"
 },
 "direction": "outbound",
 "time": "2016-08-30T14:03:06.635Z"
}

Resumed

{
 "id": "a1b2c3d5",
 "event_type": "resumed",
 "call_id": "4a2bcad2-c4b9e70a",
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous"
 },
 "to": {
 "number": "31101111111"
 },
 "direction": "outbound",
 "time": "2016-08-30T14:03:36.635Z"
}

 Realtime API 39

Start Recording

{
 "id": "a1b2c3d6",
 "event_type": "start-recording",
 "call_id": "4a2bcad2-c4b9e70a",
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous"
 },
 "to": {
 "number": "31101111111"
 },
 "direction": "outbound",
 "time": "2016-08-30T14:05:36.635Z"
}

Stop Recording

{
 "id": "a1b2c3d7",
 "event_type": "stop-recording",
 "call_id": "4a2bcad2-c4b9e70a",
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous"
 },
 "to": {
 "number": "31101111111"
 },
 "direction": "outbound",
 "time": "2016-08-30T14:15:36.635Z"
}

 Realtime API 40

Terminated

{
 "id": "a1b2c3d8",
 "event_type": "terminated",
 "call_id": "4a2bcad2-c4b9e70a",
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous"
 },
 "to": {
 "number": "31101111111"
 },
 "direction": "outbound",
 "reason": "hangup"
 "time": "2016-08-30T14:20:36.635Z"
}

Transferred

Parameters FROM and TO are moved to BEFORE and AFTER to reflect the state before

and after the transfer was made. The INITIATOR contains information about the agent

that initiated the transfer, whilst the optional field TRANSFER_TYPE shows if the

transfer was done using blind or attended transfer.

{
 "id": "a1b2c3d9",
 "event_type": "transferred",
 "call_id": "4a2bcad2-c4b9e70a",
 "before": {
 "from": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "caller_id": "anonymous",
 "number": "010"
 },
 "to": {
 "number": "31101111111"
 }
 },
 "after": {
 "from": {

 Realtime API 41

 "extension_id": "def456789abcdef456789abcdef45678",
 "caller_id": "anonymous",
 "number": "030"
 },
 "to": {
 "number": "31101111111"
 }
 },
 "initiator": {
 "extension_id": "abcdef123456abcdef123456abcdef12",
 "number": "020"
 },
 "transfer_type": "blind",
 "time": "2016-08-30T14:20:36.635Z"
}

 Realtime API 42

Perform Realtime Call Actions

Placing a new call

Endpoint /calls

Method POST

Scopes calls.create

calls.create.personal

Place a new call between 2 agents, agents can be external numbers, users and

dialplans.

POST /calls

{
 "from": {
 "number": "010"
 },
 "to": {
 "number": "+31203080700"
 }
}

202 Accepted

Limitations

• Creating calls between 2 external numbers is not allowed as part of anti-fraud

measures

• The scope calls.create.personal only allows making calls from the resource

owner/user of the access token

• From dialplan to external is reversed and will always act as external to dialplan

• From dialplan to user is reversed and will always act as user to dialplan

 Realtime API 43

The parameters below are accepted in the JSON body of the request:

Parameter Type Pattern Description

from object Optional. From which agent should the call

originate. Default will be the user/owner of

the access token.

from.number string The internal number of an extension or

dialplan, the external number of a dialplan

or the external number of an external

destination.

from.extension_Id string [a-f0-

9]{32}

A 128 bits hex describing the extension.

(user or dialplan)

to object To which agent should the call be placed.

Either number or extension_id should be

set.

to.number string The internal number of an extension or

dialplan, the external number of a dialplan

or the external number of an external

destination.

to.extension_Id string [a-f0-

9]{32}

A 128 bits hex describing the extension.

(user or dialplan)

In case of success the response code is 202 Accepted.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occurred

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

 Realtime API 44

Manipulating an existing call

Terminate / Hangup

Endpoint /calls/{call_id}/terminate

/calls/{call_id}/hangup

Method POST

Scopes calls.manage

calls.manage.personal

Terminate / Hangup a call identified by CALL_ID.

POST /calls/4a2bcad2-c4b9e70a/terminate

202 Accepted

In case of success the response code is 202 Accepted.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occurred

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

404 entity_not_exist A call with that Call ID does not exist

 Realtime API 45

Transfer

Endpoint /calls/{call_id}/transfer

Method POST

Scopes calls.manage

calls.manage.personal

Transfer blind or attended a call identified by CALL_ID. To finish attended transfer

use * on your phone, to cancel attended transfer use # on your phone.

POST /calls/4a2bcad2-c4b9e70a/transfer
{
 "target": {
 "number": "31101111111"
 },
 "transfer_type": "attended"
}

202 Accepted

POST /calls/4a2bcad2-c4b9e70a/transfer

{
 "target": {
 "extension_id": "abcd1234abcd1234abcd1234abcd1234"
 },
 "transfer_type": "blind"
}

202 Accepted

{
 "target": {
 "number": "030"
 }
}

202 Accepted

 Realtime API 46

Accepted parameters are:

Parameter Type Pattern Description

target object Where to transfer the other person.

Either number or extension_id

should be set.

target.number string The internal number of an extension

or dialplan, the external number of

a dialplan or the external number of

an external destination.

target.extension_Id string [a-f0-9]{32} A 128 bits hex describing the

extension. (user or dialplan)

transfer_type enum blind|attended What kind of transfer to perform.

Default is blind.

In case of success the response code is 202 Accepted.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occurred

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

404 entity_not_exist A call with that Call ID does not exist

 Realtime API 47

Hold and Resume

Endpoint /calls/{call_id}/hold

/calls/{call_id}/resume

Method POST

Scopes calls.manage

calls.manage.personal

Hold and resume a call identified by CALL_ID.

POST /calls/4a2bcad2-c4b9e70a/hold

202 Accepted

POST /calls/4a2bcad2-c4b9e70a/resume

202 Accepted

In case of success the response code is 202 Accepted.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occurred

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

404 entity_not_exist A call with that Call ID does not exist

 Realtime API 48

Call Recording

Endpoint /calls/{call_id}/start-recording

/calls/{call_id}/stop-recording

Method POST

Scopes calls.manage

calls.manage.personal

Start and stop recording for a call identified by CALL_ID.

POST /calls/4a2bcad2-c4b9e70a/start-recording

202 Accepted

POST /calls/4a2bcad2-c4b9e70a/stop-recording

202 Accepted

In case of success the response code is 202 Accepted.

In case of an error, the response code is anything other than 200 OK. The body may

contain a JSON object describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

400 validation A validation error on the input occurred

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

404 entity_not_exist A call with that Call ID does not exist

 Realtime API 49

Multiple CallerID’s

Get list of CallerID’s

Endpoint /extensions/{extension_id}/multiple_caller_ids

Method GET

Scopes company.dialplans

company.users

Get list of available CallerID’s for an extension

GET /extensions/3338d8e9db15becc3397a47500dac7e0/multiple_caller_ids

200 OK

[

 { caller_id: "2678d8e9db15becc3397a47500dac7e0", caller_number: "31012345678"},

 { caller_id: "2678d8e9db15becc3397a47500dac543", caller_number: "31012345679"}

]

In case of success the response code is 200 OK, the body will contain a JSON array with CallerID objects.

Each CallerID object may contain the following parameters:

Parameter Type Pattern Description

caller_id string [a-f0-

9]{32}

A 128 bits hex describing the extension

caller_number string \d{3, 15} External number in e164 without +. Available for user to set as

CallerID

 Realtime API 50

In case of an error, the response code is anything other than 200 OK. The body may contain a JSON object

describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

Change user CallerID

Endpoint /extensions/{extension_id}/caller_id

Method PUT

Scopes company.dialplans

company.users

Updates user CallerID.

Send PUT request with JSON object in the body indicating id of the number you wish to set as user CallerID.

User with Admin role can change CallerID of anyone in the company.

PUT /extensions/3338d8e9db15becc3397a47500dac7e0/caller_id

{
 "caller_id": "2678d8e9db15becc3397a47500dac7e0"
}

200 OK
{
 "extension_id": "3338d8e9db15becc3397a47500dac7e0",
 "caller_id": "2678d8e9db15becc3397a47500dac7e0"
}

 Realtime API 51

Accepted parameters are:

Parameter Type Pattern Description

caller_id string [a-f0-9]{32} Required. A 128 bits hex id of one of the available numbers

In case of success the response code is 200 OK, the body will contain a JSON object with extension id and

CallerID. Each CallerID object may contain the following parameters:

Parameter Type Pattern Description

extension_id string [a-f0-9]{32} A 128 bits hex describing the extension

caller_id string [a-f0-9]{32} A 128 bits hex id of the number used as CallerID

In case of an error, the response code is anything other than 200 OK. The body may contain a JSON object

describing the error:

Parameter Type Description

status_code number HTTP Status Code

error_code string Optional. Error code

message string Optional. A description of the error code

Known error codes are:

HTTP code Error code Description

401 invalid_grant Authorization grant is invalid or expired

403 access_denied No permission to access the required scopes

 Realtime API 52

Changelist

Version Chapter Description

1.0.0 - Rev 16 Authorization Code Grant

Flow ->

- d) Exchange authorization

code for access token

- Restoring / Renewing an

Access Token

Changed format of authorization

header.

1.0.0 - Rev 16 Subscribing to Realtime

Events ->

- Retrieve a specific

subscription

- Request a new subscription

Changed parameter name EVENTS

to EVENT_TYPES

1.0.0 - Rev 16 Receiving events from

subscriptions

Added parameter VIA to events.

1.0.0 – Rev 17 Multiple CallerID Added the new Multiple CallerID

information

